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Abstract

Understanding the mathematical properties of variational quantum ansätze is
crucial for determining quantum advantage in Variational Quantum Eigensolvers
(VQEs). A deeper understanding of ansätze not only enriches theoretical discus-
sions but also facilitates the design of more efficient and robust frameworks for
near-term applications. In this work, we address the challenge of balancing expres-
sivity and trainability by utilizing a Hamming Weight Preserving (HWP) ansatz
that confines quantum state evolution to a symmetry-preserving subspace. We
rigorously establish the necessary and sufficient conditions for subspace univer-
sality of HWP ansätze, along with a comprehensive analysis of the trainability.
These theoretical advances are validated via the accurate approximation of arbi-
trary unitary matrices in the HWP subspace. Furthermore, the practical utility of
the HWP ansatz is substantiated for solving ground-state properties of Fermionic
systems, achieving energy errors below 1 × 10−10Ha. This work highlights the
critical role of symmetry-preserving ansätze in VQE research, offering insights
that extend beyond supremacy debates and paving the way for more reliable and
efficient quantum algorithms in the near term.
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With the advent of the Noisy Intermediate-Scale Quantum (NISQ) era [1, 2], Vari-
ational Quantum Algorithms (VQAs) have emerged as a promising framework for
tackling complex optimization problems, offering potential pathways to quantum
advantage on near-term devices [3, 4]. Although these algorithms have shown sig-
nificant promise across diverse applications [5–7], the absence of intrinsic evidence
for quantum computational supremacy in VQAs underscores the need for deeper
exploration into their capabilities and limitations.

A critical factor in evaluating the potential of VQAs lies in understanding the
mathematical properties of the ansätze, including expressivity and trainability [8, 9].
Achieving a balance between these properties is particularly challenging in the expo-
nentially large Hilbert space of quantum systems [10]. Symmetry-preserving ansätze,
such as Hamming Weight Preserving (HWP) ansätze [4], offer a promising avenue for
mitigating this complexity. HWP ansätze constrain the quantum state evolution to
subspaces with fixed numbers of |1⟩s, requiring specially designed operators to enforce
these constraints. Such constraints can be mapped to a wide variety of fundamental
physical symmetries, such as particle number conservation [11, 12] and total spin sym-
metry [13, 14]. Existing approaches [15–20] have largely adopted a bottom-up strategy,
constructing HWP ansätze using operators later identified to possess the HWP prop-
erty, where it remains a challenging task to determine whether the ansatz’s failure to
achieve desired accuracy was due to insufficient expressibility, poor trainability leading
to barren plateaus, or simply an inadequate number of trainable parameters.

In this work, we propose a novel top-down framework for constructing math-
ematically interpretable HWP ansätze that are theoretically rigorous, practically
implementable, and capable of approximating arbitrary unitary matrices within the
HWP subspace. Our approach addresses foundational challenges in ansatz design
through three key contributions. First, we derive the conditions for two-qubit HWP
operators to achieve universality in the HWP subspace by analyzing the Dynamical
Lie Algebra (DLA) dimension, ensuring maximum expressivity. Second, we establish
the trainability of the ansatz by deriving gradient variance expressions, revealing its
resilience against barren plateaus [8, 21]. Third, we validate these theoretical insights
through successful approximations of arbitrary unitary matrices within the HWP
subspace [22–24], demonstrating the ansatz’s capability to efficiently capture target
quantum states or transformations. The practical utility of the proposed ansatz is
further demonstrated as a variational quantum eigensolver (VQE) for ground-state
properties of Fermionic systems [7, 13, 25] and achieved remarkable accuracy across
models.

Theoretical Results of Universality
We begin by establishing the necessary and sufficient conditions for an HWP ansatz
to be universal within the HWP subspace. By leveraging quantum optimal control
theory [26], we identify these conditions through the analysis of the Dynamical Lie
Algebra (DLA) generated by the HWP ansatz (refer to the Methods section for more
details). In order to preserve the number of |1⟩s in the quantum state, a two-qubit
HWP gate acting on qubits i and j should have the following Hamiltonian, which only
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operates on basis states |01⟩ and |10⟩:

HHWij =

 0 0 0 0
0 a b 0
0 b̄ c 0
0 0 0 0

 =
a+ c

2
Eij +

a− c

2
Sij +

b+ b̄

2
Rij +

b− b̄

2i
Jij , (1)

where a, c ∈ R, b ∈ C, and b̄ denotes the complex conjugate of b since H = H†. We
further decompose the Hamiltonian with four basis matrices:

Rij =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 ,Jij =


0 0 0 0
0 0 i 0
0 −i 0 0
0 0 0 0

 ,Eij =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,Sij =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 .

(2)
To simplify the decomposition in Eq. 1, we denote r = Re b, j = Im b, e = a+c

2 , and
s = a−c

2 , where r and j are the real and imaginary parts of b, respectively. For an
HWP subspace of n qubits with an Hamming weight of k, the dimension is given by
dk =

(
n
k

)
. Since the number of initial generators for the DLA depends on the physical

qubit connectivity, we begin by analyzing an ideal case where two-qubit HWP gates
are applied between any pair of qubits. Theorem 1 outlines the conditions under which
a two-qubit HWP gate is universal when full connectivity (FC) is available. These
conditions provide a rigorous framework for understanding the expressiveness of the
HWP ansatz.
Theorem 1. For any n and k, a two-qubit HWP gate is universal with FC if and
only if the coefficients satisfy one of the following two conditions:

(1) e ̸= 0, j ̸= 0; (2) e ̸= 0, r ̸= 0, s ̸= 0. (3)

By calculating the DLA dimension, we explore the commutation relations between
the four basis matrices, where there are 16 possible combinations (whether e, r, j, s ̸=
0). These combinations are then classified into eight distinct DLA types, each with a
unique dimensionality. Of the 16 combinations, only five yield full dimensionality in
the FC configuration, meeting the conditions set forth in Theorem 1.

Given that achieving FC on most quantum processors remains a significant chal-
lenge, especially in the NISQ era, we also extend our analysis to a more realistic
scenario involving nearest-neighbor (NN) connectivity. In this configuration, each
physical qubit is only connected to its two adjacent qubits, forming a circular topol-
ogy. The impact of this limited connectivity on the universality of the HWP ansatz is
explored in Lemma 2.
Lemma 2. If the set of generators contains all four basis matrices on NN qubits,
which are Ri,i+1, Ji,i+1, Ei,i+1, Si,i+1, the dimension of DLA is d2k.

The lemma reveals that if the generator set contains all four basis matrices acting
on NN qubits, the DLA dimension remains d2k. This can be done simply by deriving
the basis matrices on the nearest connected qubits Ri,i+1, Ji,i+1, Ei,i+1, Si,i+1 to
any two qubits Ri,j , Ji,j , Ei,j , Si,j . This result establishes a strong condition for
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NN connectivity, and we proceed by reducing the number of basis matrices in the
generator set. Given that NN connectivity allows for fewer generators than FC, the
DLA dimension for NN is either smaller than or equal to that for FC. Thus, we focus on
verifying the five combinations (including the one in Lemma 2) from the two primary
conditions in Theorem 1.
Corollary 3. For any n and k, a two-qubit HWP gate is universal with NN
connectivity if and only if the coefficients satisfy the following conditions:

(1) e ̸= 0, j ̸= 0, r ̸= 0; (2) e ̸= 0, j ̸= 0, s ̸= 0; (3) e ̸= 0, r ̸= 0, s ̸= 0. (4)

Corollary 3 indeed only rules out the combination j, e ̸= 0, r = s = 0, the DLA
dimension of which does not reach d2k when n = 2k. The above theorems offer top-down
practical guidance for designing HWP ansätze and a robust framework for evaluating
their effectiveness. While FC ensures maximum dimensionality, our findings show that
even with the constraints of NN connectivity, universality can still be achieved under
specific conditions.

Theoretical Results of Trainability
We now turn our attention to the trainability of the proposed HWP ansatz, which
is critical due to the known barren plateaus problem in VQAs [8, 21]. Typically, the
gradients of the cost function decay exponentially with the number of qubits, scaling
as O(1/2n), since VQAs operate in the 2n-dimensional Hilbert space. However, as the
HWP ansatz is confined to a dk-dimensional subspace, we conjecture that the gradient
decay should correspond to the subspace dimension, scaling as O(1/dk). The following
theorem provides the variance of the cost function gradients, using the framework
established in [8]:
Theorem 4. Consider an n-qubit quantum ansatz operating in the subspace with
Hamming weight k. The variance of the cost function partial derivative is V arθ[∂lC] ≈
16k2(n−k)2

n4dk
.

Theorem 4 supports our conjecture that the trainability of the circuit is governed
by the subspace dimensionality dk rather than the exponentially large qubit number
2n. As highlighted in [10], there exists a tradeoff between expressivity and trainability:
more expressive ansätze might offer greater representational power, but they also
suffer from diminished trainability, as optimization becomes increasingly difficult due
to flat cost landscapes. Therefore, designing ansätze that operate within a restricted
subspace, such as the HWP ansatz, may offer a potential solution to this tradeoff.

Numerical Results for Unitary Approximation
To verify the theoretical results on the universality of different gates and connectivity,
we provide numerical results on the unitary approximation problem [22–24]. The uni-
tary approximation aims to solve the problem of whether {U(θ)}θ is equal to SU(N)
(see lemma. 6). For a target unitary matrix Û in dk-dimensional HWP subspace, the
loss function for unitary approximation is

LUA(θ) = 1− |Tr
(
Û†U(θ)

)
|2/d2k. (5)
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Fig. 1 Results for unitary approximation. We iterate through all the cases for dk =
{
(5
1

)
,
(5
2

)
,
(6
2

)
,
(6
3

)
} = {5, 10, 15, 20}, with both GR and BS gates for NN and FC connectivity. For

each dk, 100 unitary matrices are randomly sampled based on Haar measure [27, 28]. a The training
curves for BS with NN connectivity. b The training curves for BS with FC connectivity. c The loss
function is plotted versus the number of parameters. Both BS-NN and BS-FC show a similar decreas-
ing pattern with the number of parameters needed for exact approximation at around d2k. Inset shows
the results for GR-NN and GR-FC, with neither method getting close to L(θ) = 0.

We take condition (1) in Corollary 3 with e = r = j = 1 and normalization
coefficients to construct the ansatz, denoted as BS ansatz, with implementation details
in the Method section. To illustrate ansatz with DLA dimension less than d2k can
not approximate an arbitrary unitary matrix to any desired accuracy, we also provide
results for the Givens Rotations (GR) [15, 16], which is widely used in Fermionic
system simulation. Fig. 1 shows the results of minimizing the loss in Eq. 5 for four
cases with HWP subspace dimension dk = {

(
5
1

)
,
(
5
2

)
,
(
6
2

)
,
(
6
3

)
} = {5, 10, 15, 20}.

Our numerical results demonstrate that the theoretically derived BS gate can
approximate a target unitary matrix with arbitrary precision, achieving a loss function
value as low as 1 × 10−12. In contrast, other commonly used HWP gates in quan-
tum chemistry, such as the GR gate, fail to approximate arbitrary unitary matrices
with similar accuracy. These numerical findings corroborate our theoretical predic-
tions, confirming that the ansatz constructed from BS gates is universal within the
HWP subspace, regardless of whether NN or FC connectivity is employed. Addition-
ally, Fig. 1c illustrates the number of parameters (or layers) required by the ansatz
to achieve this approximation. Our results support the conclusion of [29] in subspace
that the bound on overparameterization is proportional to the DLA dimension of the
ansatz, specifically d2k in our case. This further validates the applicability of overpa-
rameterization theory within the HWP subspace. The insights gained here are crucial
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Fig. 2 Results for simulating molecular electronic structures. a Potential energy curves
of four molecules w.r.t. the bond length, with the corresponding absolute errors compared to the
exact energy shown in b. HF stands for the energy with Hartree-Fock state, and GS stands for the
exact energy. The grey region shows results within chemical accuracy (less than 1.6 milli-hartrees).
c Potential energy surface of H2O, and the energy error of 100 sampled molecule structures for both
UCCSD and BS. All the data points are a minimum of 10 random seeds, with the error bars indicating
the range from minimum to maximum.

for guiding the design of HWP ansätze and their practical application in ground-state
energy estimation challenges.

Numerical Results for Solving Electronic Structures
We then utilize the proposed BS ansatz to address the challenges of quantum chemistry
simulation [7, 25, 30]. The Hamiltonians of the molecules are under the Born-
Oppenheimer approximation in the second quantization and mapped to qubits with
the Jordan-Wigner transformation. The ground state of molecules can be prepared on
a quantum computer by designing a parameterized quantum circuitU(θ) and minimiz-
ing the loss functionL(θ) = ⟨ψ0|U(θ)†HU(θ) |ψ0⟩), where H is the Hamiltonian of the
molecule. In Fig. 2, we show the calculation of the potential energy curves w.r.t. bound
length for H2 (4 qubits), LiH (12 qubits), BeH2 (14 qubits) and F2 (20 qubits), and
the potential energy surface for H2O (14 qubits). Detailed statistics of the molecules
and the hyperparameter analysis can be found in Supplementary Note D.2. To better
illustrate the efficiency of the proposed BS ansatz, we select HEA [7] and UCCSD [6]
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Fig. 3 Results for the Fermi-Hubbard model. We conduct experiments for Fermi-Hubbard
model instances on lattices of shapes 1× 4, 1× 6, and 2× 3. a Energy of the Fermi-Hubbard model
(at U/t = 4) w.r.t. integer number of occupations. The inset shows the energy error with five random
seeds for each method. The ”over” in EHV-over and BS-over represents the number of layers beyond
the overparameterization bound. b The energy error of BS and EHV at low circuit depth. In all
panels, the X-axis gives the occupation number, and the Y-axis gives the U/t. All the results are an
average of 5 random seeds.

ansatz as the baselines. We also involve GR, representing the single excitation term
of the UCC model [6]. Both BS and GR are under NN connectivity.

Our experiments demonstrate that the ansatz constructed from BS gates achieves
an error level of 1 × 10−10Ha for molecular ground state energies, consistent across
all tested bond lengths and bond angles. This precision significantly exceeds that
of existing VQE methodologies. Furthermore, in our unitary approximation task, we
established that any unitary matrix within the HWP subspace can be accurately
approximated by our proposed BS-gate ansatz. Consequently, this implies that any
state within the HWP subspace is accessible through our ansatz, effectively rendering
it a quantum circuit-based implementation of the FCI [31] method.

Numerical Results for Fermi-Hubbard Model
To further illustrate the ansatz-free HWP circuit is capable of solving various
Fermionic systems, we conduct experiments on one more iconic model in condensed-
matter physics [32], the Fermi-Hubbard model [13]. It is the simplest system that
includes non-trivial correlations and has been widely proposed as an early tar-
get for variational quantum algorithms [15, 16, 33–36]. The Hamiltonian of the
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Fermi-Hubbard model can be written in the following form:

HHF = −t
∑
i,j

∑
σ

tij(a
†
iσajσ + a†jσaiσ) + U

∑
i

a†i↑ai↑a
†
i↓ai↓, (6)

where i, j denotes adjacent sites, and σ ∈ {↑, ↓} denotes the spin. Each site of the
Fermi-Hubbard model contains two fermionic modes, and each mode is mapped to
one qubit under the Jordan-Wigner transformation.

Numerical results for Fermi-Hubbard model instances on lattices of shape 1 × 4,
1× 6, and 2× 3 are presented in Fig. 3. To assess the efficiency of the proposed HWP
ansatz, we compared its performance against the ground state (GS, the exact energy),
the Slater determinant state (classical ansatz) [37, 38], and the Efficient Hamiltonian
Variational (EHV) ansatz[36], a VQE approach composed of GR, XY, and onsite gates
(details on these methods are provided in Supplementary Note E).

We first computed the energy for all instances across different occupation numbers
at U/t = 4, focusing on scenarios with both extremely low circuit depths (5 layers)
and sufficiently deep circuits to achieve overparameterization (100 layers for 4 sites
and 200 layers for 6 sites; see Supplementary Note E). Maintaining a relatively low
circuit depth is crucial for exploring the practical utility of NISQ devices. The results
reveal that the BS ansatz consistently outperforms other baseline methods across
all circuit depths, with errors below 1 × 10−10 in the overparameterized regime. We
further examined the robustness of the BS ansatz by varying U/t and found that
increasing the number of layers steadily improves its performance, whereas the EHV
ansatz shows limited improvement. Additionally, it appears that the noninteracting
(U/t = 0) Fermi-Hubbard model poses more challenges for both VQE methods when
underparameterized, likely due to the introduction of unnecessary phases. Nonetheless,
we demonstrate that the BS ansatz consistently outperforms existing Hamiltonian
variational ansätze, delivering superior results even with a minimal number of layers.

This work rigorously establishes the necessary and sufficient conditions for an
HWP ansatz to achieve subspace universality, along with a comprehensive analysis
of its trainability. These conditions can be further extended to accommodate differ-
ent physical qubit connectivity configurations and tailored for specific values of n and
k, enabling the design of HWP operators with simpler decompositions for broader
applicability in real-world problems. The proposed ansatz represents a significant
step toward addressing the challenges of VQEs, striking a critical balance between
expressivity and trainability while offering inherent error detection capabilities. Any
deviation in Hamming weight serves as a direct indicator of bit-flip errors, making it
highly suitable for noisy environments. By providing a mathematically interpretable,
noise-resilient framework, this ansatz presents a compelling pathway for advancing
discussions of VQE supremacy in the near term.
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Method

Dynamical Lie Algebra and Controllability of Quantum Systems
We first introduce a well-defined mathematical tool to derive the theoretical findings,
which is Dynamical Lie Algebra (DLA) [39, 40]. Lie algebraic techniques have been
widely used in discussing the controllability of quantum systems due to the unitary
transformation nature of the quantum circuits. For a more intuitive understanding, the
Dynamical Lie Group G comprises unitary matrices, and the corresponding Dynamical
Lie Algebra g comprises anti-Hermitian matrices. For a L-gate parameterized quantum
circuit, we can denote the ansatz as a unitary transformation as

U(θ) =

L∏
l=1

Ul(θl) =

L∏
l=1

eiθlHl , (7)

where Ul = eiHlθl , iHl are anti-Hermitian matrices, and θ = {θ1, θ2 · · · θL} are the
parameters. We take these distinct Hamiltonians in the circuit as a set of generators
G = {iHp}Pp=1, where |G| = P . The DLA can be defined as
Definition 1. Dynamical Lie Algebra (DLA): Consider the set of generators
G = {iHp}Pp=1, the DLA g is defined as:

g = span⟨iH1, iH2, · · · , iHP ⟩Lie, (8)

where ⟨·⟩Lie denotes the Lie closure.
The DLA g is calculated by repeatedly taking the commutator of the elements

in the set of generators. The commutator of matrices A and B can be defined as
[A,B] = AB − BA. The reachable unitary matrices of the parameterized quantum
ansatz with arbitrary parameters θ can be denoted as {U(θ)}θ. We introduce the
following lemma
Lemma 5. [26] A quantum system Ĥ is completely controllable if {U(θ)}θ = G =
SU(N).

Complete controllability indicates that any desired quantum state evolution can
be achieved using the ansatz. In other words, the system’s dynamics can be fully
manipulated to reach any state in the given space from any initial state. We further
borrow an important conclusion from [26], which provides a simple way to verify the
controllability of a quantum system, namely by computing the dimension of the DLA.
Lemma 6. [26] A necessary and sufficient condition for complete controllability of
a quantum system Ĥ is that the dimension of the DLA g is N2.

A detailed computational method to calculate the dimension of DLA is described in
Supplementary Notes Alg. 1 [41]. This lemma is then utilized to derive the conditions
for universal HWP operators in the theoretical results.

Hamming Weight Preserving Operators
Based on the definition of Hamming weight and Hamming distance, we can thus
define a type of quantum circuit, namely Hamming Weight Preserving quantum cir-
cuit, where the number of non-zero elements in the quantum state remains invariant
throughout its evolution. This type of circuit naturally enforces symmetry within the
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model by treating it as a hard constraint on the circuit. To ensure that the quan-
tum circuit preserves the Hamming weight of the states, the Hamiltonian of two-qubit
HWP gates takes the following form:

HHW =


0 0 0 0
0 a b 0
0 b̄ c 0
0 0 0 0

 , (9)

where a and c are real values and b̄ denotes the complex conjugate of b. Two-qubit
HWP gates with this structure act exclusively on the basis states |01⟩ and |10⟩, thereby
maintaining the Hamming weight of the quantum state throughout computation. This
characteristic not only enforces particle number symmetry but also provides resilience
against bit-flip errors, as any such error would alter the Hamming weight , making
it easily detectable with a simple parity check. Furthermore, incorporating symmetry
verification as an additional layer can enhance the robustness and performance of
the HWP ansatz on Noisy Intermediate-Scale Quantum (NISQ) devices, making it
particularly suited for near-term quantum applications. In Fig. 4, we provide several
two-qubit gates that have been identified as HWP gates in previous works [5, 15, 16,
18–20, 36], fitting the form in Equation 9. However, none of these gates have been
rigorously analyzed in terms of their expressivity within the HWP subspace, and their
performance has been evaluated only on specific tasks with limited ansatz layers,
leaving them underparameterized.

Sketch of the Proof of Theorem 1
The primary aspect to understand is the commutation relations of the four basis
matrices. We begin by analyzing the commutators for two qubits in the same set (ij
and ij) and for different qubits (ij and jk). It is important to note that basis matrices
acting on entirely distinct qubits, such as ij and kl, do not commute, and therefore
this case is excluded from our analysis. As shown in Table 4, the commutators between
basis matrices on ij and jk involve the Pauli-Z operator. Consequently, we extend the
analysis to include commutators between basis matrices and those tensored with the
Pauli-Z operator. The results in Table 4 demonstrate that these commutators form a
closed algebra, generating no new elements.

There are fifteen distinct configurations of the HWP Hamiltonian, obtained by
combining the four basis matrices (excluding the trivial all-zero case). Utilizing the
commutation relations derived earlier, we compute the final commutation outcomes
for these configurations and determine the corresponding DLA dimensions. As shown
in Table 4, the analysis reveals eight distinct types of DLA, with only one having a
dimension of d2k. The five configurations that result in this specific DLA type can be
reduced to the following two conditions:

(1) e ̸= 0, j ̸= 0; (2) e ̸= 0, r ̸= 0, s ̸= 0. (10)
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Proof of Lemma 2
We first recall Lemma 2, which is derived from Theorem 1 and critical for analyzing
the DLA dimension with NN connectivity.
Lemma. If the set of generators contains Ri,i+1, Ji,i+1, Ei,i+1, Si,i+1, the dimension
of DLA is d2k.

Proof.
[Ji,i+1,Ei+1,i+2] = −iRi,i+1 ⊗ σz

i+2 (11)

[Ri,i+1,Ei+1,i+2] = iJi,i+1 ⊗ σz
i+2 (12)

Then it can generate all Ri,i+1 ⊗ σz
i+2 and Ji,i+1 ⊗ σz

i+2, and

[Ri,i+1 ⊗ σz
i+2,Ri+1,i+2] = iJi,i+2 (13)

[Ji,i+1 ⊗ σz
i+2,Ri+1,i+2] = −iRi,i+2 (14)

Then it can generate allRi,i+2 and Ji,i+2, and so that allRij , Jij and Sij ([Rij ,Jij ] =
−2iSij). With [Jik, [Jij ,Rjk]] = 2Sik ⊗ σz

j , all the Sij ⊗ σz
k can be generated too. We

notice that
Sij ⊗ σz

k + Sjk ⊗ σz
i = −Eij +Ejk (15)

Therefore, all Eij can be generated by Si+1,i ⊗ σz
j +Si,j ⊗ σz

i+1 +Ei,i+1 = Eij , so the

DLA can be specified to type I with the dimension d2k

Sketch of the Proof of Corollary 3
Notice that NN connectivity allows for fewer generators than FC, which indicates the
DLA dimension for NN is either smaller than or equal to that for FC. Consequently,
we only need to verify the five configurations in DLA type I (including the one derived
in Lemma 2). In this section, we focus on the unique configuration (j, e ̸= 0, r = s = 0)
where a reduction in DLA dimension occurs, leaving the derivation for the remaining
configurations to Supplementary Note B.2.

As shown in Equation 11, the commutator of Ji,i+1 and Ei,i+1 is Ri,i+1 ⊗ σz
i+2,

from which we can successively derive the following results:

[Ri,i+1 ⊗ σz
i+2,Ji+1,i+2] = −Ri+2,i

[Ri,i+2,Ei+2,i+3] = iJi,i+2 ⊗ σz
i+3

[Ri,i+1 ⊗ σz
i+2,Ri,i+2] = iJi,i+1.

(16)

We are unable to generate Ri,i+1 from the given generators, which also precludes the
generation of Si,i+1 as well. As a result, the DLA dimension for this configuration
with NN connectivity is given by

dim(DLA) =

{
d2k if k < n/2

d2k/2− 1 if k = n/2
(17)
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Therefore for any n and k, a two-qubit HWP gate is universal with nearest neighbor
connectivity if and only if the coefficients satisfy the following conditions:

(1) e ̸= 0, j ̸= 0, r ̸= 0; (2) e ̸= 0, j ̸= 0, s ̸= 0; (3) e ̸= 0, r ̸= 0, s ̸= 0. (18)

Sketch of the Proof of Theorem 4
Consider the partial derivative of the cost function C with respect to the l-th parame-
ter θl. We decompose the ansatz into two sections: U− representing the unitary matrix
of the circuit before gate Hl, and U+ denotes the unitary matrix after gate l. The
variance of the partial derivative can be expressed as:

V arθ[∂lC] =

∫
U+

dU+

∫
U−

dU−
(
∂lC(θ)

)2
, (19)

where ∂lC(θ) = ∂l

(
Tr
(
U−ρU

†
−O+

))
= iTr

(
U−ρU

†
−[Hl, O+]

)
, with ρ as the input

state and O as the observable for measurement. Thus, the variance becomes:

V arθ[∂lC] =

∫
U+

dU+

∫
U−

dU−

(
i Tr

(
U−ρU

†
−[Hl, O+]

))2
, (20)

where the initial state is typically a pure state in the dk-dimensional HWP subspace.
Therefore, by setting Tr(ρ) = 1 and Tr(ρ2) = 1, we derive:

V arθ[∂lC] = − 1

dk(dk + 1)

∫
U+

dU+ Tr
(
[Hl, O+]

2
)

= − 2Tr(H2
l )

dk(dk + 1)

(
Tr2(O)− dk Tr(O

2)

d2k − 1

)
.

(21)

Without loss of generality, we set the observable O as Z0 since other observables yield

the same magnitude. This gives Tr(O) = dk(n−2k)
n and Tr(O2) = dk. Substitute these

into Equation 21, we obtain:

V arθ[∂lC] = − 2

dk(dk + 1)
× 2k(n− k)dk

n(n− 1)
× (

d2
k(n−2k)2

n2 − d2k
d2k − 1

)

=
16k2(n− k)2d2k

(dk + 1)n3(n− 1)(d2k − 1)
≈ 16k2(n− k)2

n4dk
.

(22)

Upon further analysis, we find that if k = 1, then V arθ[∂lC] ≈ 16
n3 . Conversely, when

k = n
2 , V arθ[∂lC] ≈

(
n

n/2

)−1
, which is approximate to exponentially small. This result

supports the conjecture that the trainability of the circuit is closely tied to dk, where
a smaller dk leads to improved trainability. For detailed derivation, see Supplementary
Note C.
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Implementation Details
Experiments were conducted on a machine with 2TB memory, 100 cores Intel Xeon
Platinum 8480+ CPU, and 8 GPUs (Nvidia H100), with a Python simulator simulating
the ansätze.
BS Ansatz: The BS gate we utilized to construct the ansatz is one of the two-qubit
HWP operators derived from the theoretical results. The BS gate follows the condition
(1) in Corollary 3, so the Hamiltonian for BS gate is thus

HBS =


0 0 0 0
0 1

2
1+i
2
√
2
0

0 1−i
2
√
2

1
2 0

0 0 0 0

 , (23)

with HBS = H2
BS . We obtain the unitary matrix of the BS gate by Taylor expansion:

UBS(θ) = eiθHBS =


1 0 0 0

0 (eiθ+1)
2

(1+i)(eiθ−1)

2
√
2

0

0 (1−i)(eiθ−1)

2
√
2

(eiθ+1)
2 0

0 0 0 1

 , (24)

where eiθ = cos(θ) + i sin(θ). A possible decomposition of the BS gate is illustrated in
Fig. 5, each BS gate requires three CNOT gates to implement. We also show two BS
ansatz implementations with different physical qubit connectivity.

Since the fully connected physical qubit topology is hard to realize on existing
quantum hardware, we lay more emphasis on the NN connectivity ansatz and the cor-
responding expressivity and trainability. For directed two-qubit HWP operators, which
indicates Uij ̸= Uji with i, j as the qubit index, we can alternatively insert layers
containing reversed HWP operators as in Fig. 5b to reach the maximum expressivity.
Molecular Electronic Structures: We begin by estimating the ground state of
molecular systems, focusing on molecular Hamiltonians within the Born-Oppenheimer
approximation and expressed in second quantization. These Hamiltonians, obtained
from the Python package PySCF [42], are transformed into qubit form using the
minimal basis set STO-3G and the Jordan-Wigner transformation. The Hamiltonian
in second quantization is given by:

H =
∑
i,j

hij â
†
j âi +

1

2

∑
i,j,p,q

gijpqâ
†
j â

†
qâpâi, (25)

where âi =

(
0 0
1 0

)
denotes the annihilation operator on qubit i, corresponding to the

i-th molecular orbital in the active space. The coefficients hij and gijpq denote the
one- and two-electron integrals, respectively. A well-established solving approach is the
VQE method, with the chemically inspired unitary coupled cluster (UCC) ansatz [6,
30, 43]. The coupled cluster operator, in second quantization, is defined as T̂ = T̂1 +
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T̂2 + · · ·+ T̂v with the single and double excitation operators as

T̂1 =
∑
i,j

â†j âi, T̂2 =
∑
i,j,p,q

â†j â
†
qâpâi. (26)

For a given reference initial state |ψ0⟩, the UCC ansatz wave function is given by

|ψ⟩ = eT̂−T̂ † |ψ0⟩ [43], where T − T † is an anti-Hermitian operator which makes it
suitable for quantum computers since the exponential of an anti-Hermitian operator
is a unitary operator. The Hamiltonian for the single excitation term is

Hsingle =
1

i
(T̂ − T̂ †) =

1

i


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , (27)

which is indeed the GR we utilize as the baseline in unitary approximation. The
Hamiltonian for the double excitation operator, on the other hand, is more com-
plex, involving a 16 × 16 matrix. This increased complexity significantly challenges
implementation on NISQ devices.

In Figure 2, we conduct numerical experiments on five molecules. For H2, LiH,
F2, and BeH2, the data points across varying bond lengths are obtained by iterating
over the coefficients in the set {0.7, 0.9, 0.95, 1, 1.05, 1.1, 1.3, 1.6, 2} time the minimum-
energy bond length. This setting focuses on both the performance near the minimum-
energy point and at extended bond lengths. The maximum number of iterations is
capped at 10,000, and all the results are a minimum of 10 random seeds, with the
error bar indicating the range of 10 seeds. Since the number of layers is kept identical
across all bond lengths, the results show that increasing bond length leads to greater
variance in the BS ansatz, suggesting that the problem becomes more challenging
as bond lengths increase. For the water molecule, we explore the potential energy
surface with respect to both bond length and bond angle. The bond length coefficients
are sampled from the set {0.7, 0.8, 0.9, 0.95, 1, 1.05, 1.1, 1.2, 1.3, 1.5}, differing from the
other molecules to achieve a more evenly distributed bond lengths. The bond angles
are selected from {40◦, 60◦, 80◦, 90◦, 100◦, 104.5◦, 110◦, 120◦, 150◦, 180◦}.
The Fermi-Hubbard Model: The Fermi-Hubbard model is a fundamental model
in condensed matter physics used to study the behavior of interacting fermions on a
lattice. The electrons move between discrete sites on a lattice, and each site can be
occupied by up to two electrons. The Hamiltonian of the Fermi-Hubbard model can
be written in the following form:

HHF = −t
∑
i,j

∑
σ

tij(a
†
iσajσ + a†jσaiσ) + U

∑
i

a†i↑ai↑a
†
i↓ai↓, (28)

where i, j denotes adjacent sites, and σ ∈ {↑, ↓} denotes the spin. Each site contains
two fermionic modes corresponding to spin-up and spin-down states. Unlike molecular
Hamiltonians, the Fermi-Hubbard Hamiltonian is more complex as it includes both
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intra-site interactions and inter-spin sector couplings. The first term in eq. 6 is the
hopping term, also known as the XY-interaction [18, 19]

HXY = a†iaj + a†jai =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 =
1

2
(σx ⊗ σx + σy ⊗ σy), (29)

which is similar to the GR representing the creation and annihilation of the electrons.
The second term in Equation 6 is the onsite term, adding a phase to the state |11⟩ ⟨11|:

Honsite =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , (30)

which represents the repulsive Coulomb interaction when two electrons with opposite
spins occupy the same site. [36] utilized both terms to construct a Hamiltonian varia-
tional ansatz (the EHV ansatz) by applying NN-connected XY-interaction and onsite
layers alternately to achieve the desired accuracy.

In Figure 3, we present numerical results for both 1D (1 × 4 and 1 × 6, where all
sites lie along a line) and 2D (2×3, arranging on a rectangular lattice) Fermi-Hubbard
models. Although the 1×6 and 2×3 configurations have the same number of sites, the
2× 3 model allows for additional hopping interactions (both vertical and horizontal),
making it fundamentally different from the 1D configuration. In this experiment, we
focus more on the performance of the ansätze when underparameterized. We report
results for 5 layers, 30 layers, and a sufficient number of layers to reach overparameter-
ization. The results demonstrate that the NN-connected BS ansatz is efficient across
all layers, consistently outperforming the Hamiltonian variational ansatz. It is worth
noting that the EHV ansatz requires interactions between qubits on the same site and
adjacent sites within the same spin sector, which is impractical on NISQ devices with-
out introducing qubit swaps. These additional SWAP gates contribute to increased
circuit compilation overhead, further highlighting the advantages of the proposed BS
ansatz for near-term quantum hardware.
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Fig. 4 Two-qubit HWP gates in related works with their unitary matrices and possible decompo-
sition. The two-qubit elementary gates utilized in the decomposition involve CX, CZ, and

√
iSWAP

gates (unitary matrix in the bottom right). From top to bottom, we have Givens Rotations [15, 16],
XY-interaction [18, 19], RZZ [5], onsite gate [36], A gate [20], and non-parameterized SWAP gate.

Rij Jij Eij Sij

Rij 0 Sij 0 Jij

Jij 0 0 Rij

Eij 0 0
Sij 0

Rij Jij Eij Sij

Rjk Jik ⊗ σz
j Rik ⊗ σz

j Jjk ⊗ σz
i Jjk

Jjk Jik ⊗ σz
j Rjk ⊗ σz

i Rjk

Ejk 0 0
Sjk 0

Table 1 The commutation results of the four basis matrices (coefficients are omitted for
simplicity). Left: commutator on same qubits; Right: commutator on different qubits.

Rij ⊗ σz
k Jij ⊗ σz

k Eij ⊗ σz
k Sij ⊗ σz

k
Rjk Jik Rik Jjk Jjk ⊗ σz

i
Jjk Jik Rjk Rjk ⊗ σz

i
Ejk 0 0
Sjk 0

Rij ⊗ σz
k Jij ⊗ σz

k Eij ⊗ σz
k Sij ⊗ σz

k
Rjk ⊗ σz

i Jik ⊗ σz
j Rik ⊗ σz

j Jjk ⊗ σz
i Jjk

Jjk ⊗ σz
i Jik ⊗ σz

j Rjk ⊗ σz
i Rjk

Sjk ⊗ σz
i 0 0

Ejk ⊗ σz
i 0

Table 2 The commutation results of the four basis matrices tensored with Pauli-Z operator
(coefficients are omitted for simplicity). Left: only one with Pauli-Z; Right: both tensored with
Pauli-Z.
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I II III IV V VI VII VIII

Rij ! ! ! ! ! ! ! !

Jij ! ! ! ! ! ! ! !

Eij ! ! ! ! ! ! ! !

Sij ! ! ! ! ! ! ! !

dim d2k


d
2
k − 1 k < n/2

d2k

2
− 2 k = n/2

dk(dk−1)
2



n k = 1

n(n − 1)

2
1 < k < n/2

(n − 1)(n − 2)

2
k = n/2

n− 1


n k = 1

n(n − 1)

2
k > 1

d
2
k k < n/2

d
2
k/2 − 1 k = n/2

d2k − 1

Table 3 The classification of all fifteen configurations to eight distinct types of DLA and the
corresponding DLA dimension, where the checkmark denotes the Hamiltonian of the HWP operator
contains the corresponding basis matrix with a non-zero coefficient.
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Fig. 5 Implementation details of the BS ansatz. a A possible circuit implementation of the
proposed BS gate, where each BS gate requires three CNOT gates. b The implementation of the
BS ansatz with both NN and FC connectivity. The physical qubit layout is depicted on the left.
In the NN topology, implementing two-qubit gates between non-adjacent qubits, such as q0-q2 and
q1-q3, requires additional SWAP gates, which introduce overhead. To minimize the impact of qubit
mapping and routing complexities, we omit these generators under NN connectivity. Consequently,
FC connectivity allows for more generators per layer compared to NN connectivity. Additionally,
certain HWP gates, such as the BS gate, are directional. To maximize expressivity, we alternate
between layers containing BS gates and their reverse counterparts.
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Appendix A Preliminaries

A.1 Quantum Computing and Quantum Machine Learning

In quantum computing, ’qubit’ (abbreviation of ’quantum bit’) is a key concept which
is similar to a classical bit with a binary state. The two possible states for a qubit
are the state |0⟩ and |1⟩, which correspond to the state 0 and 1 for a classical bit
respectively. We refer the readers to the textbook [22] for comprehension of quan-
tum information and quantum computing. Here we give a brief introduction to the
background.

A quantum state is commonly denoted in bracket notation. It is also common to
form a linear combination of states, which we call a superposition: |ψ⟩ = α|0⟩+ β|1⟩.
Formally, a quantum system on n qubits is an n-fold tensor product Hilbert space H =
(C2)⊗d with dimension 2d. For any |ψ⟩ ∈ H, the conjugate transpose ⟨ψ| = |ψ⟩†. The
inner product ⟨ψ|ψ⟩ = ||ψ||22 denotes the square of the 2-norm of ψ. The outer product
|ψ⟩⟨ψ| is a rank 2 tensor. Computational basis states are given by |0⟩ = (1, 0), and
|1⟩ = (0, 1). The composite basis states are defined by e.g. |01⟩ = |0⟩⊗|1⟩ = (0, 1, 0, 0).

Analog to a classical computer, a quantum computer is built from a quantum
circuit containing wires and elementary quantum gates to carry around and manipulate
the quantum information. These gates can be parameterized quantum gates such as
Rx(θ), Ry(θ), Rz(θ) or basic gates as σx, σy, σz, CNOT,CZ. For an initial state |ψ0⟩
and L layers of quantum circuit, the final state |ψ′⟩ can be denoted as

|ψ′⟩ =
L∏

l=1

Ul |ψ0⟩ . (A1)

Quantum computing is inherently susceptible to noise, which poses significant chal-
lenges for reliable computation. Extensive research has been devoted to quantum error
mitigation [44, 45] and quantum error correction [46–49]. While these efforts are essen-
tial for universal quantum computing, some works have also focused on developing
quantum ansätze that are self-protected or resilient to specific types of errors [50, 51].
Such approaches are particularly valuable for the near-term advancement of quantum
processors. The HWP ansatz explored in this paper offers immunity to bit-flip errors,
thereby significantly enhancing its practical utility by simplifying error mitigation and
correction in near-term quantum devices.

A.2 Hamming Distance and Hamming Weight

In this section, we recall the definition of Hamming distance and Hamming weight,
which is constantly used in this paper. Considering two binary vectors a and b
with a,b ∈ {0, 1}N , where N is the dimension of the vectors. We can define the
corresponding Hamming distance of these two vectors as follows:
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Algorithm 1 Computing the dimension of DLA

Require: Generator set G = {H1,H2, · · · ,HP }, hi = σ(Hi).
let D = h1;
let r = rank(D);
for i = 2 to P do
if rank(D,hi) > r then
D.append(hi);
r = r + 1;

end if
end for
let rout = 0;
let rn =rank(D);
while rout ̸= rn and r ̸= N2 do
for l = rout + 1 to rn do
for j = 1 to l − 1 do
let Htmp = [σ−1(D:,l), σ

−1(D:,j)], htmp = σ(Htmp);
if rank(D,htmp) > r then
D.append(htmp);
r = r + 1

end if
end for

end for
let rout = rn;
let rn = rank(D);

end while
return rout.

Definition 2. Hamming distance: The Hamming distance D of two binary vectors
a and b is:

c = a⊕ b,

D(a,b) =

N∑
i=1

ci,
(A2)

where ⊕ stands for exclusive OR operator.
With the definition of Hamming distance, we can further define the Hamming

weight of a given binary vector a.
Definition 3. Hamming weight: Let 0 = 0N . The Hamming weight HW of binary
vector a is:

HW (a) = D(a,0), (A3)

A.3 Detailed algorithm for computing the dimension of DLA

In this section, we provide an algorithm to calculate the DLA dimension. We define
a transformation σ which satisfies h = σ(H) (H ∈ CN×N ,h ∈ CN2×1), where h is a
column vector obtained by concatenating the columns of H vertically. σ−1 stands for
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the inversed transformation which maps a column vector ∈ CN2×1 back to a matrix
∈ CN×N . D:,j denotes the j-th column of matrix D, and rank(D,h) is the rank
of matrix D appending column vector h to the right. [·, ·] denotes the commutator
between two matrices with [A,B] = AB−BA. The pseudo code for the algorithm is
shown in Alg. 1.

Appendix B Detailed Proof for the Universality

B.1 Proof of Theorem 1

Theorem. For any n and k, a two-qubit HWP gate is universal with full connectivity
(FC) if and only if the coefficients satisfy one of the following two conditions:

(1) e ̸= 0, j ̸= 0; (2) e ̸= 0, r ̸= 0, s ̸= 0. (B4)

Proof. We have derived the commutation results of the four basis matrices in the
Method section 4. Now we provide the derivation of the eight distinct DLA types. The
directed arrows in the figures indicate generative relations of the elements.

...
...

...
...

...

⊗3σz ! ! !

⊗2σz ! ! !

⊗1σz ! ! !

⊗0σz ! ! ! !
type I Rij Jij Eij Sij

… … …
Fig. B1 Generators in the DLA type I and one feasible set of generative relationships: [Rij ,Rjk ⊗l

σz
ml ̸=i,j,k] = iJki⊗σz

j ⊗lσz
ml ̸=i,j,k = iJki⊗l+1σz

ml ̸=i,k, [Jki⊗l+1σz
ml ̸=i,k,Rki] = 2iSki⊗l+1σz

ml ̸=i,k,

[Ski,Jki ⊗l+1 σz
ml ̸=i,k] = 2iRki ⊗l+1 σz

ml ̸=i,k.

...
...

...
...

...

⊗3σz ! !

⊗2σz !

⊗1σz ! !

⊗0σz !
type II Rij Jij Eij Sij

… … …

Fig. B2 Generators in the DLA type II and a feasible set of generative relationships: [Rij ,Rjk ⊗2l

σz
ml ̸=i,j,k] = iJki ⊗ σz

j ⊗2l σz
ml ̸=i,j,k = iJki ⊗2l+1 σz

ml ̸=i,k, [Jki ⊗2l+1 σz
ml ̸=i,k,Rik] = 2iSki ⊗2l+1

σz
ml ̸=i,k, [Ski ⊗ σz

j ,Jki ⊗2l+1 σz
ml ̸=i,k] = 2iRki ⊗ σz

j ⊗2l+1 σz
ml ̸=i,j,k = 2iRki ⊗2l+2 σz

ml ̸=i,j,k.
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...
...

...
...

...

⊗3σz !

⊗2σz !

⊗1σz !

⊗0σz !
type III Rij Jij Eij Sij

…

Fig. B3 Generators in the DLA type III and a feasible set of generative relationships: [Jij ,Jjk ⊗l

σz
ml ̸=i,j,k] = iJik ⊗ σz

j ⊗l σz
ml ̸=i,j,k = iJik ⊗2l+1 σz

ml ̸=i,k.

...
...

...
...

...
⊗3σz

⊗2σz

⊗1σz

⊗0σz !
type IV Rij Jij Eij Sij

Fig. B4 Generators in the DLA type IV .

...
...

...
...

...
⊗3σz

⊗2σz

⊗1σz

⊗0σz !
type V Rij Jij Eij Sij

Fig. B5 Generators in the DLA type V .

...
...

...
...

...
⊗3σz

⊗2σz

⊗1σz

⊗0σz ! !
type VI Rij Jij Eij Sij

Fig. B6 Generators in the DLA type VI.
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...
...

...
...

...

⊗3σz ! !

⊗2σz !

⊗1σz ! !

⊗0σz ! !
type VII Rij Jij Eij Sij

… … …

Fig. B7 Generators in the DLA type VII and a feasible set of generative relationships: [Rij ,Rjk⊗2l

σz
ml ̸=i,j,k] = iJki ⊗ σz

j ⊗2l σz
ml ̸=i,j,k = iJki ⊗2l+1 σz

ml ̸=i,k, [Jki ⊗2l+1 σz
ml ̸=i,k,Rik] = 2iSki ⊗2l+1

σz
ml ̸=i,k, [Ski ⊗ σz

j ,Jki ⊗2l+1 σz
ml ̸=i,k] = 2iRki ⊗ σz

j ⊗2l+1 σz
ml ̸=i,j,k = 2iRki ⊗2l+2 σz

ml ̸=i,j,k.

...
...

...
...

...

⊗3σz ! ! !

⊗2σz ! ! !

⊗1σz ! ! !

⊗0σz ! ! !
type VIII Rij Jij Eij Sij

… … …

Fig. B8 Generators in the DLA type VIII and a feasible set of generative relationships: [Rij ,Rjk⊗l

σz
ml ̸=i,j,k] = iJki⊗σz

j ⊗lσz
ml ̸=i,j,k = iJki⊗l+1σz

ml ̸=i,k, [Jki⊗l+1σz
ml ̸=i,k,Rki] = 2iSki⊗l+1σz

ml ̸=i,k,

[Ski,Jki ⊗l+1 σz
ml ̸=i,k] = 2iRki ⊗l+1 σz

ml ̸=i,k.

The dimension of these eight DLA types is demonstrated in Table B.1. Notice that
k ≤ n/2 in the Table since the dimension of DLA {n, k} is the same as {n, n− k}.

I II III IV V VI VII VIII

Rij ! ! ! !

Jij ! ! !

Eij ! ! ! !

Sij ! ! ! !

dim d2k


d
2
k − 1 if k < n/2

d2k

2
− 2 if k = n/2

dk(dk−1)
2



n if k = 1

n(n − 1)

2
if 1 < k < n/2

(n − 1)(n − 2)

2
if k = n/2

n− 1


n if k = 1

n(n − 1)

2
if k > 1

d
2
k if k < n/2

d
2
k/2 − 1 if k = n/2

d2k − 1

Table B1 Eight distinct DLA types and the corresponding dimension. The checkmark denotes
whether the basis matrix is in the generator set G.

We then derive all fifteen configurations (excluding the all-zero one) and illustrate
how they can be regulated to these eight DLA types. Recall the definition of the
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Hamiltonian of the HWP gate acting on the i-th and j-th qubits:

HHWij =


0 0 0 0
0 a b 0

0 b c 0
0 0 0 0

 , (B5)

and it can be decomposed as a linear combination of the four basis matrices:

HHWij = rRij + jJij + eEij + sSij , r, j, e, s ∈ R, (B6)

where r = Re b, j = Im b, e = a+c
2 , s = a−c

2 . We notice that

HHWji = rRij − jJij + eEij − sSij (B7)

So that
[HHWij ,HHWji] = 4ir(ISij − sJij) (B8)

HHWij +HHWji = 2eEij + 2rRij (B9)

HHWij −HHWji = 2jJij + 2sSij (B10)

1. r, j, e, s ̸= 0
HHWij = rRij + jJij + eEij + sSij (B11)

The determinant of the coefficients of Jij and Sij in Eq.B8 and Eq.B10 is∣∣∣∣−4irs 4irj
2j 2s

∣∣∣∣ = −8ir(j2 + s2) ̸= 0 (B12)

Then the set of generators contains Jij and Sij . With [Jij ,Eij ] = −2iRij and
Eq. B11, Rij and Eij are contained too. So DLA of this case can be specified to
type I and

dim(DLA) = d2k (B13)

2. r, j, e ̸= 0, s = 0
HHWij = rRij + jJij + eEij (B14)

Same as r, j, e, s ̸= 0 1, DLA of this case can be specified to type I and

dim(DLA) = d2k (B15)

3. r, j, s ̸= 0, e = 0
HHWij = rRij + jJij + sSij (B16)

Similar to r, j, e, s ̸= 0 1, the set of generators contains Rij , Jij and Sij but without
Eij , so DLA of this case can be specified to type VIII and

dim(DLA) = d2k − 1 (B17)
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4. r, j ̸= 0, e = s = 0
HHWij = rRij + jJij (B18)

Same as r, j, s ̸= 0, e = 0, DLA of this case can be specified to type VIII and

dim(DLA) = d2k − 1 (B19)

5. r, e, s ̸= 0, j = 0
HHWij = rRij + eEij + sSij (B20)

Same as r, j, e, s ̸= 0 1, DLA of this case can be specified to type I and

dim(DLA) = d2k (B21)

6. r, e ̸= 0, j = s = 0
HHWij = eEij + rRij (B22)

[HHWij ,HHWjk] = ir(eJij ⊗ σz
k + eJjk ⊗ σz

i + rJki ⊗ σz
j ) (B23)

(1)r ̸= e,−2e We can alternate the cyclic subscripts to get

[HHWjk,HHWki] = ir(rJij ⊗ σz
k + eJjk ⊗ σz

i + eJki ⊗ σz
j ) (B24)

and
[HHWij ,HHWjk] = ir(eJij ⊗ σz

k + rJjk ⊗ σz
i + eJki ⊗ σz

j ) (B25)

The determinant of the coefficients of Jij , Jjk and Jki in the formulas is∣∣∣∣∣∣
ire ire ir2

ir2 ire ire
ire ir2 ire

∣∣∣∣∣∣ = i(e− r)2r3(2e+ r) ̸= 0 (B26)

Then the set of generators contains Jij ⊗ σz
k. With

[Jij ⊗ σz
k,HHWij ] = rSij ⊗ σz

k (B27)

and
[Sij ⊗ σz

k,Jij ⊗ σz
k] = Rij (B28)

Then the set of generators contains Rij and Eij (HHWij = eEij + rRij) but
without Jij and Sij , so DLA of this case can be specified to type VII and

dim(DLA) =

{
d2k if k < n/2

d2k/2− 1 if k = n/2
(B29)

(2)r = e

[HHWij ,HHWjk] = −r2(Jij ⊗ σz
k + Jki ⊗ σz

j + Jjk ⊗ σz
i ) (B30)

[HHWik, [HHWij ,HHWjk]] = 2r3Ski ⊗ σz
j (B31)
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[Sij ⊗ σz
k,HHWij ] = Jij ⊗ σz

k (B32)

[Sij ⊗ σz
k,Jij ⊗ σz

k] = 2Rij (B33)

Then the set of generators containsRij and Eij (HHWij = eEij+rRij) but without
Jij and Sij , so DLA of this case can be specified to type VII and

dim(DLA) =

{
d2k if k < n/2

d2k/2− 1 if k = n/2
(B34)

(3)r = −2e
HHWij = eEij − 2eRij (B35)

[HHWij ,HHWjk] = 2e2Jij ⊗ σz
k + 2e2Jjk ⊗ σz

i − 4e2Jki ⊗ σz
j (B36)

[HHWki, [HHWij ,HHWjk]] = 2e2(−8Ski ⊗ σz
j + 3Rjk − 3Rij) (B37)

[HHWki, [HHWjk,HHWki]] = 2e3(4Ski ⊗ σz
j − 4Rij + 5Rjk) (B38)

2[HHWki, [HHWjk,HHWki]]+[HHWki, [HHWij ,HHWjk]] = 2e3(−11Rij+13Rjk)
(B39)

We can alternate the cyclic subscripts to get

2[HHWij , [HHWki,HHWij ]]+[HHWij , [HHWjk,HHWki]] = 2e3(−11Rjk+13Rki)
(B40)

2[HHWjk, [HHWij ,HHWjk]]+[HHWjk, [HHWki,HHWij ]] = 2e3(−11Rki+13Rij)
(B41)

The determinant of the coefficients of Rij , Rjk and Rki in Eq. B39, Eq. B40 and
Eq. B41 is ∣∣∣∣∣∣

−11 13 0
0 −11 13
13 0 −11

∣∣∣∣∣∣ = 866 ̸= 0 (B42)

Then the set of generators contains Rij and Eij (HHWij = eEij + rRij) but
without Jij and Sij , so DLA of this case can be specified to type VII and

dim(DLA) =

{
d2k if k < n/2

d2k/2− 1 if k = n/2
(B43)

7. r, s ̸= 0, j = e = 0
HHWij = rRij + sSij (B44)

Similar to r, j, e, s ̸= 0 1, the set of generators contains Rij , Jij and Sij but without
Eij , so DLA of this case can be specified to type VIII and

dim(DLA) = d2k − 1 (B45)

8. r ̸= 0, j = e = k = 0
HHWij = rRij (B46)
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Then the set of generators only contains Rij but without Jij , Eij and Sij , so DLA
of this case can be specified to type II and

dim(DLA) =


d2k − 1 if k < n/2

d2k − 1

2
if k = n/2

(B47)

9. j, e, s ̸= 0, r = 0
HHWij = jJij + eEij + sSij (B48)

HHWij +HHWji = 2eEij (B49)

Then the set of generators contains Eij , and

[HHWij +HHWji,HHWjk −HHWkj ] = −4iejRjk ⊗ σz
i (B50)

[Ejk,Rij ⊗ σz
k] = −iJij (B51)

[Rij ⊗ σz
k,Jjk] = −iRki (B52)

[Rij ,Jij ] = −2iSij (B53)

Then the set of generators contains Rij , Jij , Eij and Sij , so DLA of this case can
be specified to type I and

dim(DLA) = d2k (B54)

10. j, e ̸= 0, r = s = 0
HHWij = jJij + eEij (B55)

Same as r ̸= 0, j = e = k = 0 8, DLA of this case can be specified to type I and

dim(DLA) = d2k (B56)

11. j, s ̸= 0, r = e = 0
HHWij = sSij + jJij (B57)

[HHWij ,HHWjk] = ij(sRij − jJki ⊗ σz
j − sRjk) (B58)

[[HHWij ,HHWjk],HHWij ] = −(j3 + js2)Jjk + 2j2sSij − 2js2Jij (B59)

[[HHWij ,HHWjk],HHWij ]−2j2HHWij = −(j3+js2)Jjk−(2j3+2js2)Jij (B60)

[[HHWij ,HHWjk],HHWjk] = −2j2sSjk + 2js2Jjk + (j3 + js2)Jij (B61)

[[HHWij ,HHWjk],HHWjk]+2j2HHWjk = (2js2+2j3)Jjk+(j3+ js2)Jij (B62)

The determinant of the coefficients of Jij and Jjk in Eq. B60 and Eq. B62 is∣∣∣∣−(j3 + js2) −(2j3 + 2js2)
2js2 + 2j3 j3 + js2

∣∣∣∣ = −j2(j2 + s2)2 + 4j2(j2 + s2)2 = 3j2(j2 + s2)2 > 0

(B63)
Then the set of generators contains Jij . With HHWij = sSij+jJij and [Sij ,Jij ] =
2iRij , the DLA also contains Rij and Sij but without Eij , so DLA of this case can
be specified to type VIII and

dim(DLA) = d2k − 1 (B64)
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12. j ̸= 0, r = e = s = 0
HHWij = jJij (B65)

Then the set of generators only contains Jij but without Rij , Eij and Sij , so DLA
of this case can be specified to type III and

dim(DLA) =
dk(dk − 1)

2
(B66)

13. e, s ̸= 0, r = j = 0
HHWij = eEij + sSij (B67)

HHWij +HHWji = 2eEij (B68)

HHWij −HHWji = 2sSij (B69)

Then the set of generators contains Eij , lij , but withoutRij and Jij , so DLA of
this case can be specified to type VI and

dim(DLA) =

{
n if k = 1

d2k/2− 1 if k = n/2
(B70)

14. e ̸= 0, r = j = s = 0
HHWij = eEij (B71)

Then the set of generators only contains Eij but without Rij , Jij and Sij , so DLA
ofthis case can be specified to type IV and

dim(DLA) =


n if k = 1

n(n− 1)

2
if k > 1

(n− 1)(n− 2)

2
if k = n/2

(B72)

15. s ̸= 0, r = j = e = 0
HHWij = sSij (B73)

Then the set of generators only contains Sij but without Rij , Jij and Eij , so DLA
of this case can be specified to type V and

dim(DLA) = n− 1 (B74)

To sum up, we can conclude the classification of the fifteen configurations to the eight
DLA types as the following Table B.1. Therefore for any n and k, a two-qubit HWP
gate is universal with full connectivity if and only if the coefficients satisfy one of the
following two conditions:

(1) e ̸= 0, j ̸= 0; (2) e ̸= 0, r ̸= 0, s ̸= 0. (B75)
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r ! ! ! ! ! ! ! !

j ! ! ! ! ! ! ! !

e ! ! ! ! ! ! ! !

s ! ! ! ! ! ! ! !
DLA I II III IV V VI VII VIII

Table B2 The classification of all fifteen configurations to eight DLA types, where checkmark
denotes the corresponding coefficient is non-zero in the decomposition of the Hamiltonian.

B.2 Proof of Corollary 3

Corollary. For any n and k, a two-qubit HWP gate is universal with nearest neighbor
connectivity if and only if the coefficients satisfy the following conditions:

(1) e ̸= 0, j ̸= 0, r ̸= 0; (2) e ̸= 0, j ̸= 0, s ̸= 0; (3) e ̸= 0, r ̸= 0, s ̸= 0. (B76)

Proof. 1. r, j, e, s ̸= 0

HHWij = rRij + jJij + eEij + sSij (B77)

[HHWij ,HHWji] = 4ir(jSi,i+1 − sJi,i+1) (B78)

HHWi,i+1 −HHWi+1,i = 2sSi,i+1 + 2jJi,i+1 (B79)

The determinant of the coefficients of Si,i+1 and Ji,i+1 in Eq. B78 and Eq. B79 is∣∣∣∣4irj −4irs
2s 2j

∣∣∣∣ = 8ir(j2 + s2) > 0 (B80)

Then the set of generators contains Si,i+1, Ji,i+1 and Ri,i+1, Ei,i+1

([Ji,i+1,Si,i+1] = −2iRi,i+1 and E ̸= 0). According to the Lemma 2 DLA of this
case can be specified to type I and

dim(DLA) = d2k (B81)

2. r, e, s ̸= 0, j = 0
Same as 1, the set of generators contains Ri,i+1,Ji,i+1,Ei,i+1,Si,i+1. According to
the Lemma 2 DLA of this case can be specified to type I and

dim(DLA) = d2k (B82)

3. r, j, e ̸= 0, s = 0
Same as 1, the set of generators contains Ri,i+1,Ji,i+1,Ei,i+1,Si,i+1. According to
the Lemma 2 DLA of this case can be specified to type I and

dim(DLA) = d2k (B83)
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4. j, e, s ̸= 0, r = 0

HHWij = jJij + eEij + sSij (B84)

HHWi,i+1 +HHWi+1,i = 2eEi,i+1 (B85)

HHWi,i+1 −HHWi+1,i = 2(sSi,i+1 + jJi,i+1) (B86)

[HHWi,i+1+HHWi+1,i,HHWi+1,i+2−HHWi+2,i+1] = −4iejEi+1,i+2⊗σzi (B87)

[Ei+1,i+2,Ri,i+1 ⊗ σz
i+2] = Ji,i+1 (B88)

Then the set of generators contains all Ji,i+1 ,Ei,i+1, Si,i+1 and Ri,i+1

([Ji,i+1,Si,i+1] = −2iRi,i+1]). According to the Lemma 2 DLA of this case can be
specified to type I and

dim(DLA) = d2k (B89)

5. j, e ̸= 0, r = s = 0
Similar to 4, the set of generators contains Ji,i+1 and Ei,i+1, then

[Ri,i+1 ⊗ σz
i+2,Ji+1,i+2] = −Ri+2,i (B90)

Then it can generate all Ri,i+2, and

[Ji,i+1,Ei+1,i+2] = −iRi,i+1 ⊗ σz
i+2 (B91)

[Ri,i+2,Ei+2,i+3] = iJi,i+2 ⊗ σz
i+3 (B92)

[Ri,i+1 ⊗ σz
i+2,Ri,i+2] = iJi,i+1 (B93)

The set of generators contains Ri,i+2 but can’t generate new elements like Ri,i+1

and Si,i+1, so it’s specified to a different type of DLA with

dim(DLA) =

{
d2k if k < n/2

d2k/2− 1 if k = n/2
(B94)

Therefore for any n and k, a two-qubit HWP gate is universal with nearest neighbor
connectivity if and only if the coefficients satisfy the following conditions:

(1) e ̸= 0, j ̸= 0, r ̸= 0; (2) e ̸= 0, j ̸= 0, s ̸= 0; (3) e ̸= 0, r ̸= 0, s ̸= 0. (B95)

Appendix C Detailed Proof for the Trainability

Theorem 7. Consider an n-qubit quantum circuit operating in the subspace with
Hamming weight k. The variance of the cost function partial derivative is V arθ[∂lC] ≈
16k2(n−k)2

n4dk
.
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Proof. Consider the partial derivative of the cost function C with respect to the
parameters θ. For some parameter θl in the l-th HWP gate Hl, we have:

∂lC(θ) = ∂l

(
Tr
(
U(θ)ρU(θ)†O

))
, (C96)

where ρ is the input state, O is the observable to measure. We split the whole ansatz
to two parts with U− denotes the unitary matrix of the circuit before Hl and U+

denotes the unitary matrix after gate l.

∂lC(θ) = ∂l

(
Tr
(
U−ρU

†
−O+

))
= iTr

(
U−ρU

†
−[Hl, O+]

)
,

(C97)

where [·, ·] denotes the commutator of two matrices. The variance of the partial
derivative is thus given by

V arθ[∂lC] =

∫
U+

dU+

∫
U−

dU−
(
∂lC(θ)

)2
=

∫
U+

dU+

∫
U−

dU−

(
i Tr

(
U−ρU

†
−[Hl, O+]

))2
= −

∫
U+

dU+

(
Tr(ρ2) Tr

(
[Hl, O+]

2
)

d2k − 1
−

Tr2(ρ) Tr
(
[Hl, O+]

2
)

dk(d2k − 1)

)

= −
∫
U+

dU+

(
Tr
(
[Hl, O+]

2
)dk × Tr(ρ2)− Tr2(ρ)

dk(d2k − 1)

)

= −dk × Tr(ρ2)− Tr2(ρ)

dk(d2k − 1)

∫
U+

dU+ Tr
(
[Hl, O+]

2
)
.

(C98)

As long as the initial state is the dk subspace, we have Tr(ρ) = 1 and Tr(ρ2) = 1.

V arθ[∂lC] = − 1

dk(dk + 1)

∫
U+

dU+ Tr
(
[Hl, O+]

2
)

= − 2

dk(dk + 1)

(
Tr(HlO+HlO+)− Tr(HlHlO+O+)

)
= − 2

dk(dk + 1)

(
Tr(H2

l ) Tr
2(O)

d2k − 1
− Tr(H2

l ) Tr(O
2)

dk(d2k − 1)
− Tr(H2

l ) Tr(O
2)

dk

)

= − 2Tr(H2
l )

dk(dk + 1)

(
Tr2(O)− dk Tr(O

2)

d2k − 1

)
,

(C99)

where Tr(H2
l ) = 2

(
n−2
k−1

)
= 2k(n−k)

n(n−1) dk. Without loss of generality, we set the observable

O as Z0 since other observables will also hold with the same magnitude. Thus, Tr(O) =
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dk(n−2k)
n and Tr(O2) = dk. Substitute this back into Equation C99 and we get

V arθ[∂lC] = − 2

dk(dk + 1)
× 2k(n− k)dk

n(n− 1)
× (

d2
k(n−2k)2

n2 − d2k
d2k − 1

)

=
4k(n− k)

(dk + 1)n(n− 1)
× d2k(n

2 − (n− 2k)2)

(d2k − 1)n2

=
4k(n− k)

(dk + 1)n(n− 1)
× d2k(4nk − 4k2)

(d2k − 1)n2

=
16k2(n− k)2d2k

(dk + 1)n3(n− 1)(d2k − 1)
≈ 16k2(n− k)2

n4dk
.

(C100)

We can further analyze that if the k is only 1, then V arθ[∂lC] ≈ 16
n3 . If the k = n

2

on the other hand, V arθ[∂lC] ≈
(

n
n/2

)−1
, which is approximate to exponentially small.

This result is consistent with the conjecture that the trainability of the circuit is closely
related to dk, and smaller dk will lead to better trainability.

Appendix D Implementation Details and
additional Numerical Results

D.1 Unitary Approximation

We further provide the training curves of the Givens Rotations, including all four
cases (dk = {

(
5
1

)
,
(
5
2

)
,
(
6
2

)
,
(
6
3

)
} = {5, 10, 15, 20}) with both NN and FC connectivity.

As illustrated in Figure D9, the ability to approximate an arbitrary unitary matrix is
restricted by the DLA dimension and increasing the number of parameters as the BS
ansatz does not improve the performance. The average value and the minimum value
both converge to similar results over a different number of parameters indicating we
could already be facing overparameterization for the Givens Rotations.

D.2 Molecular Electronic Structures

For simulating molecular electronic structures, we first present the statistics of the
molecules examined in our experiments (as shown in Table D3). The molecular Hamil-
tonians were obtained from OpenFermion without freezing any orbitals, a common
technique used to reduce the problem size. All the numerical results in the main
part (including the heat map in Fig. 2C) are a minimum of 10 random seeds since
the results for UCCSD are sensitive to the initializing of the parameters. To further
illustrate the effectiveness of the proposed BS ansatz, we utilized Givens Rotations,
UCCSD, and HEA as the baseline methods. The implementation of the GR and HEA
ansätze is illustrated in Figure D11, with the GR gate specifically depicted in Figure 4.
The UCCSD ansatz is constructed using the MindQuantum Python package [52]. For
the proposed BS ansatz, as well as all baseline methods, the Hartree-Fock (HF) state
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Fig. D9 Additional Results for Unitary Approximation. The training curves for Givens
Rotations. The solid line indicates the average loss, and the shadow area indicates the range of the
results of 100 random unitary matrices.
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Fig. D10 Additional Results for simulating molecular electronic structures. The energy
error w.r.t. the number of parameters with grey region shows results within chemical accuracy.

serves as the initial state. The exact ground state for comparison is obtained via the
FCI method using PySCF [42].

In Figure D10, we further examine the impact of the number of parameters, which
is treated as a hyperparameter in the main text. Both the HEA and GR ansätze
exhibit a consistent trend, indicating that they have reached the maximum express-
ibility of the ansatz but remain unable to approximate the ground state with sufficient
accuracy. We exclude the UCCSD ansatz from this comparison, as the ansatz is fixed
for a given Hamiltonian. Instead, we provide the number of parameters and the total
number of gates for both the UCCSD and BS ansätze in Table D3. Notably, our find-
ings reveal that the number of parameters required to reach overparameterization for
molecular electronic structures is significantly smaller than expected, diverging from
the anticipated d2k. For an error margin close to chemical accuracy, fewer than 2× dk
parameters are sufficient. This observation is particularly impactful, as it suggests that
solving a VQE for Fermionic system simulation may require a number of parameters
that scales linearly with dk, offering valuable insights into the potential advantages of
the VQE algorithm on intermediate-scale quantum processors.
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Molecules H2 LiH H2O BeH2 F2

n 4 12 14 14 20
k 2 4 10 6 18
dk 6 495 1001 3003 190

#params for UCCSD 12 640 1000 1488 684
#gates for UCCSD 158 12612 21090 31414 17166
#params for BS 40 3000 2240 7000 4000
#gates for BS 326 24016 17944 56020 32038

Table D3 Statistics of molecules. n and k are the numbers of orbitals and electrons, respectively.
The number of gates is counted when decomposed to basic parameterized rotation gates and
simple two-qubit gates as CNOT or CZ. Note that the number of parameters is more than enough
for BS ansatz (see Figure D10) to ensure the stability of the performance. We can reduce the
number of gates to a similar value to UCCSD and still reach much better results. All the other
baseline methods (e.g., HEA, GR) have parameters that are identical to those of the BS ansatz.
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Fig. D11 Ansatz of Baseline Methods. a One layer of HEA ansatz utilizing parameterized
rotation Y and Z gates and CNOT gates. The first k (number of electrons) qubits are initialized to
|1⟩ as the HF state. b One layer of GR ansatz with n (number of orbitals) GR gates connecting
neighboring qubits. c An example for EHV ansatz for 1*4 sites Fermi-Hubbard model at half filling.
Top four qubits for spin-ups and the rest for spin-downs. The GR gates are utilized for initialization,
and the EHV ansatz requires repeatedly applying the onsite layer and XY-interaction layer.

Appendix E The Fermi-Hubbard Model

We begin with a brief introduction to the Fermi-Hubbard model, focusing on how a
variational quantum algorithm can be employed to solve it, with specific details on
the implementation of the EHV ansatz [36]. The Hamiltonian of the Fermi-Hubbard
model is given by:

HHF = −t
∑
i,j

∑
σ

tij(a
†
iσajσ + a†jσaiσ) + U

∑
i

a†i↑ai↑a
†
i↓ai↓. (E101)

For a Fermi-Hubbard model with a 1 × 4 site configuration, there are four fermionic
modes for spin-up and four for spin-down electrons. By applying the Jordan-Wigner
transformation, each mode is mapped onto a qubit. As shown in Figure D11c, the
first four qubits correspond to spin-up modes, while the remaining four correspond to
spin-down modes, with qubits 1-5, 2-6, 3-7, 4-8 representing the two modes of a single
site.
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Fig. E12 Additional Results for Fermi-Hubard model. The energy error w.r.t. the number
of parameters with grey region shows results within chemical accuracy.

In a half-filled system, half of the sites are occupied, meaning each spin is repre-
sented by four qubits, with two in the |1⟩ state. Notably, hopping occurs only within
the same spin, so the GR and XY interaction gates operate independently on either
the top four or bottom four qubits. The EHV ansatz improves the initial state, which
would otherwise be set to |11001100⟩, by using one diamond-shaped layer of parame-
terized GR gates. The EHV ansatz is composed of alternating layers: one layer of onsite
gates, coupling the two modes of each site, and one layer of NN XY-interaction gates
within each spin. These layers are applied alternately to achieve the desired accuracy,
with all gates in each layer sharing a single parameter. Notice that the EHV ansatz
requires interactions between qubits on the same site and adjacent sites with the same
spin. However, this configuration is impractical on a NISQ device without incorpo-
rating qubit swaps, regardless of the mapping approach. Thus, a full implementation
of the EHV ansatz on quantum hardware necessitates the use of additional fermionic
SWAP gates, which introduce a phase of −1 on the |11⟩ ⟨11| state compared to stan-
dard SWAP gates. These additional gates increase the complexity, further highlighting
the advantages of the proposed BS ansatz.

Similar to molecular electronic structures, we analyze the effect of the number
of parameters on both the BS and EHV ansätze. All the numerical results for the
Fermi-Hubbard model are the average of 5 random seeds. In [36], the authors report
results with a single layer (two for the 1 × 4 system) and suggest that ”increased
ansatz depth can lead to higher performance.” However, as shown in Figure E12,
increasing the EHV ansatz depth does not consistently improve performance, with
none of the three instances achieving error within chemical accuracy. It seems the
parameter-sharing strategy is severely damaging the expressivity of the EHV ansatz. In
contrast, the BS ansatz successfully approximates the ground state with high precision.
Notably, the results for the 1 × 6 and 2 × 3 systems show fluctuations in error as
the number of parameters increases, likely due to the increased complexity in the
training landscape. As with the molecular electronic structures, we observe that the
number of parameters required to reach overparameterization scales linearly with dk
(dk[1×4] = 70, dk[1×6, 2×3] = 924). This suggests that adding correlations does not
increase the difficulty of solving the system with the BS ansatz. Future work will focus
on extending the symmetry-preserving VQE solver for fermionic systems, aiming to
provide deeper theoretical insights into this observation.
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